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Abstract

In machine learning, the presence of spurious correlations poses a significant obsta-
cle to accurately learning the true relationship between input and outcome. These
correlations arise from hidden associations between features and outcomes, often
resulting from confounding by unobserved variables, which may lead to predictors
exploiting this association when it should not have an effect on the outcome. To
check for such correlations, one can perform stress tests by perturbing the irrelevant
parts of the data and assessing whether there are changes in predictions across
various irrelevant settings. In this report, we build off of the insights from " Coun-
terfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests"
to train predictors that are invariant to such spurious associations; we reproduce
their perturbative stress test experiments and extend their work to fairness for
addressing algorithmic bias. By connecting the notion of counterfactual invariance
with observationally-testable conditional independence criteria, we reemphasize
the critical importance of understanding the true underlying causal structure of
the data, and that the correct regularizer encourages counterfactual invariance.
Furthermore, we explore the application of conditionally invariant regularizers in
the context of fairness, which promotes specific measures of fairness based on the
underlying causal structure, again implying that alignment with the correct causal
model is essential for effective fairness promotion.

1 Introduction

In the rapidly evolving field of machine learning, model developers and practitioners are frequently
confronted with the challenge of spurious correlations. These are apparent relationships that appear
in data but lack any real underlying causal connection, meaning a corresponding predictor should be
invariant to changes in the "irrelevant parts." This issue is especially significant in the context of *black
box’ testing procedures for machine learning models, such as perturbative stress testing. These tests,
which involve changing only the deemed "invariant" parts of the input and observing the resulting
changes in the model’s output, are popular due to their simplicity and intuitive appeal. However,
despite their widespread use, many fundamental questions about these tests remain unanswered. For
example, how does a model’s performance in these tests relate to its overall performance? How
can we design models that consistently pass these tests, particularly when our ability to generate
perturbed examples is limited? The ad hoc nature of these tests makes it difficult to provide universally
applicable answers.

In this paper, we aim to use their principles of causal inference which provide a structured understand-
ing of what it truly means for a model to pass these stress tests. Causal inference tools play a crucial
role in formalizing and examining perturbative stress tests, as demonstrated the "Counterfactual
Invariance to Spurious Correlations: Why and How to Pass Stress Tests". A key insight of the
paper lies in finding an invariant predictor by using their connection between counterfactual invariant
desiderata and practical testable conditional independence criteria based on the underlying causal
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structure. This connection emphasizes the necessity of obtaining a comprehensive understanding of
the true underlying causal structure within the data.

The original research findings align with the present paper’s analysis of the semi-synthetic Ama-
zon dataset, affirming that conditional regularization, which aligns with the anti-causal structure,
effectively reduces checklist failures. These failures are quantified by the frequency of predicted
label alterations caused by perturbations and the resulting mean absolute difference of predictive
probabilities being nonzero. Hence, the study suggests that the correct application of regularizers can
enhance model robustness against perturbations, thereby preserving counterfactual invariance.

Extending the analysis to the realm of fairness, we show that the causal regularizer is equivalent to
promoting demographic parity and the anti-causal regularizer is equivalent to promoting equalized
odds, which are two types of fairness metrics. We apply this analysis to training on the COMPAS
dataset with counterfactual invariance, using gender and race as sensitive attributes. We found that
the causal regularizer, which fits the true data-generating process of the COMPAS data, demonstrates
a more stable performance compared to the anti-causal regularizer, which emphasizes the need to
select the regularizer according to the correct causal structure. Furthermore, we show that the causal
regularizer on causal data indeed promotes demographic parity, which can be considered a form of
fairness. However, we do see that when addressing certain biases, the effectiveness of the causal
regularizer may plateau beyond a certain coefficient threshold, indicating counterfactual invariance is
still bottlenecked by inherent limitations within the dataset itself.

Overall, this report highlights the importance of employing the appropriate regularizer that aligns
with the true underlying causal structure of the data, as well as how counterfactual invariance can
promote certain types of fairness, also depending on the underlying causal structure of the data.

2 Counterfactual Invariance

2.1 Problem Set Up

To formulate the problem at hand, let us consider the task of training a predictor f which tries
to predict a label Y based on a set of covariates X. In the Counterfactual Invariance paper, the
focus lies in constructing predictors that are invariant to some well-defined perturbations applied
to the covariates, specifically, "spurious" perturbations. To capture this idea, we assume there is
an additional variable, Z, which contains information that should not influence the predictions,
though Z may have a causal effect on X; we denote X (z) as the counterfactual of X that we would
have observed if Z had been set to z and kept all other variables fixed. This allows us to interpret
"perturbative stress tests" as counterfactual pairs, namely X (z) and X (2’), which differ due to an
intervention on Z but should not result in changes to the predictions. We can formalize this, denoting
the property counterfactual invariance:

Definition 1.1 A predictor [ is counterfactually invariant to Z if f(X(2)) = f(X(2')) (almost)
everywhere, for all z, 2z’ in the sample space of Z.

To derive properties of a counterfactually invariant predictor, they consider two causal structural
that capture most situations that involve such spurious association between protected attribute Z
and outcome Y. Specifically, they distinguish between the causal direction, when Z causes some
covariates in X which cause Y, and the anti-causal direction, where Y and Z both cause the covariates.
In both cases, the covariate variables X can be divided into 3 groups X ;, Xy az,and X#; X é is
the subset of features that are independent from, or not caused by, Z, X % is the subset of features
that are independent from Y, and X5 5z are the features that are dependent on both Y and Z. The
following diagrams capture the causal structures for each direction:
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Figure 1: Causal models for the data generating process

2.2 Observable Signature

With a well-defined problem, they can now consider how to achieve counterfactual invariance in
practice. The main challenge now is that counterfactual invariance is defined based on the predictor’s
behavior on counterfactual data, which, in practice, is impossible to simultaneously observe. However,
we can overcome this issue by deriving a measurable signature of counterfactual invariance, which
can be evaluated and enforced in practice using standard datasets where the variable Z is directly
measured.

Intuitively, a predictor f has counterfactual invariance if it depends only on X, which is the only
part of the "inputs" X that is not causally affected by Z. First they formally define X ;:

Lemma 3.1 Let X é be a X -measurable random variable such that, for all measurable functions f,
we have that f is counterfactually invariant if and only if f(X) is X Z-measurable. If Z is discrete
then such a X+ exists.

This means our objective is to identify a predictor that solely relies on the covariates X . To
accomplish this, they leverage the causal structures in Figure 1 to derive the conditional independence
relationships that lead to an invariant predictor. These relationships are testable through observed
data, so they provide a signature for counterfactual invariance, depending on the underlying causal
structure:

Theorem 3.2 If f is a counterfactually invariant predictor:

1. Under the anti-causal graph, f(X) L Z|Y

2. Under the causal-direction graph, if Y and Z are not subject to selection (but possibly
confounded), f(X) L Z.

3. Under the causal-direction graph, if the association is purely spurious, Y | X | X%, Z, and
Y and Z are not confounded (but possibly selected), f(X) L Z |Y.

Even though we cannot directly enforce counterfactual invariance as it would require access to
counterfactual pairs, we can try to encourage a trained model to satisfy the signatures found in
Theorem 3.2 by adding a corresponding regularization term to the loss. By regularizing the model to
satisfy the appropriate conditional independence condition, the model in theory should be encouraged
to be counterfactually invariant. For simplicity, they only consider binary Y and Z. They employ
the maximum mean discrepancy (MMD) loss, which serves as a metric for comparing probability
measures. Minimizing the difference between the two probability measures through MMD encourages
equality and, consequently, the desired conditional independence. This gives them the (infinite data)
regularization terms:

marginal regularization = MMD(P(f(X) | Z =0),P(f(X) | Z=1))
conditional regularization = MMD(P(f(X) | Z =0,Y =0), P(f(X) | Z = =0))
+MMD(P(f(X)|Z=0,Y =1),P(f (X)\Z 1,Y =1)).



In practice, they approximate the MMD with finite data samples (2), and during training with
stochastic gradient descent, they compute the penalty on each minibatch.

A key point is that the choice of regularizer depends on the underlying causal structure, as the
conditional and marginal independence conditions are often incompatible. Consequently, enforcing
a condition that does not align with the true causal structure may fail to promote counterfactual
invariance in the model, or may throw away more information than is necessary.

Identifiability: The conditional independence signature in Theorem 3.2 serves as a necessary
condition for counterfactual invariance, but it is not sufficient for two reasons. First, counterfactual
invariance pertains to individual realizations of data points, whereas the signature itself is distri-
butional in nature. Specifically, the invariance P(f(X)|do(Z = z)) = P(f(X)|do(Z = 2")) for
all z, 2’ would satisfy the conditional independence signature yet it would not fit their definition of
counterfactual invariance since this invariance is actually weaker as it does not require access to actual
counterfactual realizations. Second, albeit unlikely, there may be cases where certain values of Z are
unobservable in practice or there may be other unobserved variables that confound X and Z, which
would mean the independence between f(X) and Z in the training data, denoted as f(X) L Z, does
not generally imply that f(X) L Z is independent of Z and thus that Z is not a cause of f(X).

3 Fairness

3.1 Demographic Parity:

We say that a predictor Y satisfies demographic parity with respect to protected attribute 7 if Y and
Z are independent, i.e:

A predictor with demographic parity has equal positive, and consequently negative, prediction rates
across the protected and unprotected groups.

3.2 Equalized Odds:

We say that a predictor Y satisfies equalized odds with respect to protected attribute Z and true
outcome Y, if Y and Z are independent conditional on Y, i.e: (3)

P(?:l\Y:y,Zzo):]P’<Y:1|Y:y7Z:1) vy € {0,1}

A predictor with equalized odds has equal true positive rates across the protected and unprotected
groups (denoted by the equation where y = 1), and equal false positive rates across the protected and
unprotected groups (denoted by the equation where y = 0).

3.3 Connection to Counterfactual Invariance

Veitch notes in Remark 3.3 that their notion of counterfactual invariance can be connected to fairness
when considering Z to be a protected attribute, such as race or gender. Based on the equations, we
can see that demographic parity is equivalent to the causal condition f(X) L Z, and equalized odds
is equivalent to the anti-causal condition f(X) L Z | Y. To formally show this,

In the causal cause, we have f(X) L Zor Y L Z, and therefore P(Y, Z) = P(Y)P(Z). Thus, by
starting by with a necessarily true equation, we can derive the demographic parity equation, meaning
it must always hold given the causal condition:
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The same can be done for the anti-causal condition f(X) L Z |Y orY L Z | Y, which implies that
PY,Z|Y=y)=PY|Y=yP(Z|Y =y)forally € {0,1}. We can similarly derive the
equalized odds equation from an inherently true equation:
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This implies that in the context of fairness, if we want to prevent the predictor from exploiting spurious
associations from protected attributes, then counterfactual invariance either guarantees demographic
parity or equalized odds, depending on which regularizer we use and whether it is appropriate for
the underlying causal structure. One insight this can provide is when we should apply each fairness
metric since they oftentimes contradict one another. This also brings up a question of what it means
when both demographic parity and equalized odds hold; the underlying structural causal model would
be implied to be both causal and anti-causal, though this is not possible.

4 Experiments

We reproduce experiments from paper, "Counterfactual Invariance to Spurious Correlations". We
also apply their notion of counterfactual invariance to fairness with the COMPAS dataset and analyze
the two aforementioned fairness measures of the resulting predictor.

4.1 Amazon Experiments

In our research, we specifically replicate a synthetic confounding experiment from the original
paper titled Counterfactual Invariance to Spurious Correlations. Our objective is to corroborate
the assertion made in the referenced work (8)), which posits that "Regularizing conditional MMD
improves counterfactual invariance on synthetic anticausal data".

4.1.1 Synthetic Dataset

Synthetic counterfactuals in product review Data: We employ a Synthetic counterfactuals setup
as outlined in the study by Vietch V et al. (8). In this synthetic confounding experiment, each review
is associated with a Bernoulli random variable, denoted as Z. A perturbation is then introduced into



the review text, referred to as X, which effectively transforms common words such as "the" and "a"
into carriers of information about Z. For instance, when Z equals 1, the token "the" is substituted
with the token "thexxxxx". Comprehensive details regarding the data generation process are provided
in the appendix.

The review score, denoted as Y/, is taken as the dependent variable, and a subsampling process is
performed to ensure a balanced distribution of Y. The data exhibits an anti-causal structure, wherein
the text X is designed to explicate the score Y. It is hypothesized that any association between Y’
and Z is purely coincidental, stemming from the fact that the words "the" and "a" carry minimal
information concerning the label.

The models are trained on a dataset where the probability of Y equalling Z, denoted as P(Y = Z),
is fixed at 0.3. To evaluate the resilience of the models, we follow the perturbed stress-test datasets
as describe in the paper. This is achieved by transforming each instance X;(z) to its counterfactual
X;(1 — z), as prescribed by the synthetic model (8).

By evaluating the performance of each model on the perturbed dataset, we assess whether the
distributional properties imposed by the regularizers result in counterfactual invariance at the instance
level. This experiment provides insights into the effectiveness of the regularizers in maintaining the
stability of the model outcomes under perturbations.

4.1.2 Model and Implementation Details

We implemented our own codebase using Pytorch (7)) and HuggingFace transformers (9). We
use BERT (1) as the base model for all experiments in the Amazon review section, specifically
employing the "bert_en_uncased_L-12_H768_A-12’ configuration from the Huggingface Hub (9)
with no parameter alterations. Following standard procedures, a linear transformation is applied to
the representation layer for making predictions. we train identical architectures using CrossEntropy +
A - Regularizer as the objective function, where we vary A and take Regularizer as either the marginal
penalty, or conditional penalty. Training is conducted using stochastic gradient descent with a batch
size of 80 and a learning rate set to le-5. To mitigate overfitting, we implement early stopping on
validation risk with a patience of 10. The models were trained on a single A100 GPU. Our codebase
is flexible enough to support all the model architecture from huggingface universe without any change
in the codebase.

For the MMD regularizer, we employ the estimator developed by Gretton et al. (2)), using the Gaussian
RBF kernel. We set the kernel bandwidth at 10.0.

4.1.3 Results
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Figure 2: Comparison of In-Domain and Perturbed Accuracy as a function of Regularization Co-
efficients. As the regularization coefficient increases, both the in-domain and perturbed accuracy
decrease, indicating the model’s performance is sensitive to the regularization strength.
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Figure 3: The generated plot represents the relationship between regularization coefficients and two
metrics: label flip rate and the Maximum Mean Discrepancy (MMD) test.
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Figure 4: MMD regularization reduces the rate of predicted label flips on perturbed data, with little
affect on in-domain accuracy

In-Domain Accuracy vs Regularization Coefficient: The In-Domain Accuracy of the model
decreases as the regularization coefficient increases. This suggests that higher regularization leads to
a simpler model which may not capture the complexity of the training data as effectively, thereby
reducing its performance on in-domain tasks.

Perturbed Accuracy vs Regularization Coefficient: Initially, as the regularization coefficient
increases from 1.0 to 10.0, the Perturbed Accuracy of the model shows a slight increase. This
suggests that a certain degree of regularization may help the model to generalize better and handle
perturbations more effectively. However, as the regularization coefficient continues to increase
beyond 10.0, Perturbed Accuracy also starts to decline, reflecting the model’s reduced ability to
handle complexity.

Label Flip Rate: The Label Flip Rate initially increases with the regularization coefficient, indicating
that higher regularization may lead to more instability in the model’s predictions. However, when
the regularization coefficient is extremely high (1000.0 and 10000.0), the Label Flip Rate reduces to
zero, implying the model’s output becomes invariant, regardless of input perturbations.

Conditional MMD Test and Perturbed Test: These metrics are very low for all values of the
regularization coefficient, suggesting that the model’s predictions are relatively consistent across
different instances of the same input. However, it should be noted that these values increase slightly



when the regularization coefficient is extremely high (1000.0 and 10000.0), indicating a slight
decrease in consistency.

In summary, it seems that there is a trade-off in the choice of the regularization coefficient. The
results suggest that a moderate level of regularization (in this case, around 10.0) might be the most
effective. However, the optimal level of regularization likely depends on the specific context and
requirements of the task at hand.

4.2 COMPAS Experiments

We then extend their work on counterfactual invariance to algorithmic fairness by applying the
aforementioned regularization to training on COMPAS data. Our objective is to find a counterfactually
invariant predictor with respect to protected attributes such as gender and race, which should imply
a "fair" predictor. Since the outcome of whether a person recidivates is thought to be a result of an
individual’s characteristics, which are the input features, we consider the data-generating process to
be causal rather than anti-causal.

4.2.1 COMPAS Background

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) algorithm
is a machine-learning tool, used by the courts in multiple U.S. states, to predict the likelihood of
recidivism for criminal offenders, which they use to determine pretrial release, sentencing, and parole.
In 2016, ProPublica, a non-profit investigative newsroom, published an article concluding that the
algorithm was biased against black defendants, as it was more likely to falsely flag them as having a
higher risk of re-offending than white defendants (6). Though there were previous questions about the
potential bias of the algorithm, this confirmed concerns about the fairness of blindly using machine
learning models in criminal justice decisions.

This can be related to counterfactual invariance in the context of fairness; the issue with the COMPAS
algorithm is that it seems to exploit spurious correlations between sensitive features (such as race) and
the outcome due to historic and systemic biases. This causes the model to output two very different
scores even when the rest of the attributes are held the same except for race, which to an analyst looks
unfair or discriminatory.

4.2.2 Model and Implementation Details

Though we do not have access to the exact details of the COMPAS algorithm, we can train a basic
MLP model without any adjustment for counterfactual invariance and use it as a baseline since it
achieves similar accuracy as the reported accuracy of the COMPAS algorithm. For our experiments,
we use a pre-processed (filtered and binarized) data set that ProPublica released as part of their studies
(5) and trained an MLP model to predict whether the individual would recede or not, where the
loss is the sum of the cross entropy loss and the weighted MMD loss of the marginal/conditional
probabilities, based on the regularizer and its coefficient. To derive the MMD loss, we employ the
same estimator developed by Gretton et al. (2)), using the Gaussian RBF kernel with bandwidth set to
10.0. The specific details of the MLP model and training are in the appendix (Section[7).

For fairness metrics, we consider the difference between the probabilities so the demographic parity
metric is defined as

P(Y:1|Z:O)7P<Y:1|Z:1>
and equalized odds metric is defined as

L [pl=sizmnr =) (v -112- )

To collect data for the graphs, we average the results (loss, accuracy, and fairness metrics) of 10
models trained with each regularizer coefficient, and we tested about 70-80 coefficients in total.

4.2.3 Results

Gender: Though ProPublica does not focus on gender, it is a commonly used sensitive attribute
for stress tests on models. We applied the counterfactual invariance algorithm with the sensitive
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attribute Z as the binary variable representing whether or not the individual was female, and found
the following results:
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Figure 5: COMPAS Experiments with the sensitive attribute Gender

When the causal regularizer is applied, we observe that increasing the coefficient has minimal impact
on the performance of the predictor, though it dies slightly decrease. In contrast, the anti-causal
regularizer exhibits a more pronounced decrease in performance as the coefficient is increased. This
suggests that the anti-causal regularizer leads the model to become a trivial predictor that makes
arbitrary guesses. This finding aligns with our intuition that applying an incorrect regularizer based
on the underlying structural causal model can incentivize the model to sacrifice predictive accuracy
in favor of satisfying the wrong regularizer. Conversely, using the correct regularizer yields more
consistent performance.

In terms of fairness, the demographic parity and equalized odds of the unregularized model (i.e.,
with a coefficient of 0) both exhibit positive and relatively high values. This indicates a significant
disparity in prediction outcomes between males and females; specifically, the unregularized model
has a higher likelihood of predicting males as recidivists and its true positive rate is higher for males
compared to females, and thus the false negative rate is higher for females than males. However, as
we increase the coefficient, which is the weight of the regularizer, the demographic parity moves
toward 0. In contrast, equalized odds initially decrease but then somewhat stabilize, presumably
because the predictor the model finds that satisfies demographic parity has a higher true positive
rate for females than males. This validates our earlier intuition that the causal regularizer effectively
promotes demographic parity, i.e., minimizing the disparity, which also happens to naturally influence
the equalized odds metric. Conversely, the anti-causal regularizer leads to both the equalized odds
and demographic parity metrics approaching 0 as the coefficient increases. This outcome likely stems
from the fact that, as previously mentioned, the only models satisfying the anti-causal regularizer are
relatively trivial predictors that exhibit poor accuracy.

Race: The main focus of ProPublica’s findings was the racial bias in the COMPAS algorithm, so
we apply the same idea of counterfactual invariance with race as the sensitive attribute. Specifically,
we assigned 1, the protected group, to represent Black individuals and 0, the unprotected group, to be
all other races.
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Figure 6: COMPAS Experiments with the sensitive attribute Race

Like the previous example, when we apply the causal regularizer, increasing the coefficient has
minimal impact on the performance of the predictor, again with a slight decrease. In contrast, the
performance of models trained with the anti-causal regularizer more significantly decreases as the
coefficient is increased, which again suggests that the anti-causal regularizer leads the model to
become a trivial predictor. This finding similarly confirms our intuition that models trained with the
correct regularizer, according to the underlying structural causal model, yield relatively consistent
performance as we increase the coefficient whereas applying an incorrect regularizer can incentivize
the model to satisfy the incorrect regularizer while forfeiting its predictive accuracy.

However, this example differs a bit more in the context of fairness. The demographic parity and
equalized odds of the unregularized model (i.e., with a coefficient of 0) both exhibit relatively
high and negative values this time, implying a difference in prediction outcomes between Black
individuals and others; specifically, the unregularized model has a higher likelihood of predicting
Black individual will recidivate, and its true positive rate is higher for Black individuals compared to
other individuals, and thus the false negative rate is higher for other individuals than black individuals.
This agrees with Propublica’s findings that an unregularized model will result in a biased predictor,
most likely due to historic and systemic biases that are reflected in the data. However, as we increase
the coefficient, which is the weight of the regularizer, the demographic parity jumps toward O but
then remains relatively constant. This implies that with the data provided, it is not possible to find
an accurate predictor that gets the demographic parity metric closer to 0 beyond about —0.1. In
contrast, equalized odds metric initially drastically increases and then stabilizes as we increase the
coefficient, presumably because the predictor that satisfies demographic parity (or does as best as it
can) has a smaller difference between true positive and false negative rates between Black individuals
and the other individuals. This supports our prior intuition that the causal regularizer promotes a
predictor with demographic parity, which just happens to naturally influence the equalized odds of
the predictor.

Conversely, the anti-causal regularizer leads to both the equalized odds and demographic parity
metrics approaching O as the coefficient increases, and the accuracy decreases quite significantly,
like before. Similarly, this outcome likely stems from the fact that the only predictors the model can
find that satisfy the anti-causal regularizer are relatively trivial predictors with poor accuracy. This is
interesting because, with the causal regularizer, we were able to find a predictor whose equalized odds
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metric was very close to 0 (about 0.02), but when we apply the anti-causal regularizer, it does not
find the same predictor with high accuracy. This could be due to the fact the model cannot properly
traverse the gradient of the incorrect regularizer since it does not match the data-generating process,
while the appropriate regularization term encourages the model to correctly converge to a predictor
that actually learns from the data while regularizing.

5 Conclusion

In this paper, we utilized the tools of causal inference to formalize and scrutinize perturbative
stress tests. A primary insight of our work is the connection between counterfactual desiderata and
observationally-testable conditional independence criteria. Such a connection necessitates a thorough
understanding of the true underlying causal structure of the data. Our analysis of the COMPAS
algorithm, applying counterfactual invariance to gender and race as sensitive attributes, leads to key
conclusions that reinforce the importance of this concept in addressing algorithmic bias.

5.1 Counterfactual Invariance Paper

Our findings matches with the original paper, indicate that conditional regularization, which aligns
with the anti-causal structure, leads to a reduction in checklist failures. Checklist failures are quantified
by the frequency of the predicted label altering due to the perturbation and the mean absolute
difference in predictive probabilities that the perturbation incites. Therefore, our study suggests that
the application of regularizers can enhance the robustness of models against perturbations, thereby
ensuring the preservation of counterfactual invariance.

There is a trade-off in the choice of the regularization coefficient. Too low a value may not sufficiently
prevent overfitting, leading to poorer performance on perturbed data. Too high a value, on the other
hand, may lead to underfitting, reducing performance on both in-domain and perturbed data. The
results suggest that a moderate level of regularization (in this case, around 10.0) might be the most
effective. However, the optimal level of regularization likely depends on the specific context and
requirements of the task at hand.

5.1.1 Application to Fairness

From our comprehensive analysis of the COMPAS algorithm with counterfactual invariance using
gender and race as sensitive attributes, we draw several significant conclusions.

Our evaluation of the COMPAS algorithm led to significant conclusions. The causal regularizer
yielded more stable performance than the anti-causal regularizer, underscoring the need to align the
regularizer with the correct causal model. The causal regularizer also promoted fairness, as indicated
by demographic parity and equalized odds. However, in the case of racial bias, the effectiveness of
the causal regularizer plateaued beyond a certain threshold, suggesting inherent limitations within the
dataset.

In conclusion, we underscore the importance of using suitable regularizers that align with the true
underlying causal structure of the data in machine learning models. This practice not only sustains the
model’s predictive performance but also significantly enhances fairness, aiding in the mitigation of
bias. Nevertheless, it is also essential to recognize that even the most appropriate regularizer may face
limitations in fully eliminating disparities, especially when dealing with data reflecting deep-rooted
societal biases. Thus, the pursuit of algorithmic fairness must be a multi-faceted approach, combining
robust model techniques, careful scrutiny of data sources, and continuous monitoring of algorithmic
outcomes.
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7 Appendix

7.1 Implementation details of Synthetic Data set

In order to generate data, We preprocess the data by selecting a subset of the reviews and converting
the review score into a binary format (1 for positive reviews with scores 4 or 5, and O for all others).
We also truncate each review text to the first 20 words to simplify the problem.

Next, we create an additional binary variable, Z, following a Bernoulli distribution. This variable
is used to control the modification of the review text. Specifically, we replace the words and’ and
’the’ in the review text, adding unique suffixes based on the value of Z. This process serves to create
distinct versions of the review text.

In the subsequent step, we induce an association between the outcome variable (Y) and the introduced
binary variable (Z). This is achieved through data resampling, ensuring that the proportion of positive
reviews is higher when Z=1 and lower when Z=0, or vice versa, based on a defined parameter, gamma.

7.2 Results on Synthetic Counterfactuals in product review data

In-Domain Accuracy: This is a measure of how well a model performs on the specific dataset it
was trained on, also known as the training set.

Perturbed Accuracy: This is a measure of how well the model performs on a perturbed dataset,
which is a dataset that has been slightly modified or 'noised’ in some way. It is used to evaluate the
robustness of the model to slight changes in the input data. If a model has high perturbed accuracy, it
suggests that the model is robust and can generalize well to new or slightly different data.
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Regularization Coefficient ~In-Domain Accuracy —Perturbed Accuracy —Label Flip Rate  Marginal MMD Test Marginal MMD Perturbed Test ~ Probability Difference

1.0 0.843 0.833 0.034 0.019 0.010 0.005
10.0 0.804 0.836 0.099 0.001 0.028 0.014
100.0 0.724 0.739 0.081 0.001 0.003 0.003
1000.0 0.607 0.607 0.0 2.145e-07 2.384e-07 0.0
10000.0 0.607 0.607 0.0 1.549¢-07 4.053e-07 0.0
Regularization Coefficient In-Domain Accuracy Perturbed Accuracy —Label Flip Rate  Conditional MMD Test ~ Conditional MMD Perturbed Test ~ Probability Difference
1.0 0.84486 0.81875 0.07138 0.00415 0.00856 -0.01805
10.0 0.83666 0.82347 0.05263 0.00199 0.00381 -0.00986
100.0 0.82597 0.81402 0.03777 0.00011 0.00019 -0.00277

1000.0 0.60708 0.60708 0.0 0.000003 0.000004 0.0
10000.0 0.60708 0.60708 0.0 0.000000083 0.000000083 0.0

Table 1: Comparison of model performance metrics at different regularization coefficients

Label Flip Rate: This is a measure of how often the predicted label of an instance changes when
the sensitive attribute is flipped. A high label flip rate indicates that the model’s predictions are
significantly influenced by the sensitive attribute, suggesting potential bias.

Probability Difference: This is a measure of the difference in the probabilities of a certain predic-
tion between the two groups defined by the sensitive attribute.

7.3 Implementation details of COMPAS training

The following table contains details about various hyperparameters of the training process and MLP
model being trained.

Figure 7: MLP Training Information

hyper-parameter value | hyper-parameter value
epochs 10 | hidden layers (100, 30, 10)
batch size 256 | training set 0.65
learning rate 10~3 | validation set 0.15
optimizer Adam (4) | test set 0.20

7.4 Released Code Details

We release our code under MIT License at: https://github.com/tejasvaidhyadev/Causal_Inference_Project.
The model’s weights, data, and other dependencies required for the experiment are at
https://github.com/tejasvaidhyadev/Causal_Inference_Project/releases.

Our code is designed for academic research and has been made publicly available for others to use
for their own research or other purposes. As per our knowledge, it is the only public implementation
of paper. (8). The code README file on the GitHub repository provides detailed instructions on
how to reproduce the results.
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