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There is a growing interest in automating decision-making by using machine learning (ML) models to estimate
scores that can be used to rank candidates [2, 4, 1]. Consider, as an example, loan application decisions. An institution
might train an ML model from historical data to predict the probability that a candidate will default on their loan, based
on various features in their application. For new applicants, the trained model predicts a score that the institution can
use to approve or reject loan applications, or at least rank the applicants for further review.

In these ML-based decision-making contexts, the field of algorithmic fairness has developed a number of metrics
to assess the disparity faced by different demographic groups [3], as well as by individuals [6]. However, algorithmic
decision-making is often dynamic, with individuals responding to the deployment of ML models and their automated
predictions. In the loan example, rejected applicants may adapt their applications to get a better outcome, potentially
by gaming the classifier or making changes to become more loan-worthy candidates in the future. These dynamics,
which we refer to as performative effects, lead to a feedback loop between the model’s prediction and the true outcome
(e.g., defaulting on a loan or not), which is hard to analyze and is often ignored by existing fairness metrics, which
assume a static data-generating process. Recently the fields of strategic classification and performative prediction have
begun to address this phenomenon in the context of machine learning [5], but most works ignore potential disparities
between different segments of the population. In this emerging line of work, models often do not account for factors that
may result in demographic groups adapting differently, which can lead to unfair decisions when applied to the different
segments of the population.

The goal of our project is to analyze unfairness in performative ML-based decision-making settings, where indi-
viduals are incentivized by model predictions to change their attributes over time. More specifically, we are interested
in understanding how, over time, the unfairness of the learned model can persist and perpetuate the systemic biases
in settings where individuals put effort into improving their features after receiving an ML-based decision. We pro-
pose modeling such systems with four types of variables: protected attributes, causal attributes, spurious attributes, and
outcomes of interest. In the loan example, protected attributes could be candidates’ specified gender or race while the
outcome of interest is defaulting on a loan or not. Causal attributes are those that when changed, would directly affect the
probability of defaulting; for our loan example, a person’s income. Spurious attributes are associated with the outcome
but do not cause it directly, and are often also correlated with one’s protected attributes. In the loan example, where
someone attended university might be a spurious attribute. In our setting, we assume that an ML model is trained to
predict the outcome, and candidates observe their predictions from the classifier. Crucially, we assume that rejected can-
didates put in effort to improve their attributes in order to receive a prediction value that gives them a positive decision in
the future. Which features they change and by how much is defined by their knowledge of the true underlying structural
model, the ML classifier, their cost for changing each feature, and a budget of the amount of effort they can put in.

The first key challenge we address is developing new measures of unfairness for this performative setting, where
disparities in the ability of each group to improve their scores may compound any disparities at the start. We propose
two metrics that capture these disparities in improvement across different segments of the population: i) “improvability”
which measures, out of those who could have improved their true outcome, how many would truly improve when
adapting according to the classifier, and ii) “gaming”, which measures, out of those with a negative true outcome after
adaptation, how many fooled the classifier into a positive prediction. Our preliminary experiments have highlighted
models in which the learned classifier uses the spurious features significantly for prediction, resulting in a misalignment
between the optimal adaptation according to the classifier and the optimal adaptation according to the data generation
process. This can be a source of unfairness because if a bank’s ML classifier puts a high weight on an applicant’s
spurious features, such as university degree, then an applicant from a privileged background may not need to put in as
much effort into adaptation compared to a person who did not have the same educational opportunities, even with the
same causal features. Using the developed metrics, we plan to tackle a second key challenge of understanding why the
classifier misaligns with the true causal model. This will allow us to develop ML methods to train decision models on
biased data that do not exploit spurious correlations between sensitive attributes and the outcome, thus reducing bias and
promoting fairness.
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