Fairness of Learned Classifiers
under Performative Effects

e

N

lla

Sophia Gunliik, Antonio Gois, Stmon Lacoste-Julien, Dhanya Sridhar

Bail and Parole Loan Applications

Introduction

* Decision-making has been increasingly automized using machine learning,
such as for banks giving out loans or judges determining bail or parole.

e Trained using historical data: (x;, y,) L1 gt
e  Goal: learn risk-scoring function f(x) ~ P(Y = 0| X = x) in order to identify

positive predicted outcomes, using decision function D(x) = 1{f(x) < 7}

. Objective: f = argmin E(xyynaol€ (f(2), ¥)]
feF ’

* Predictors naively trained can inherit bias from historic data, based on
sensitive attributes such as the demographic attributes of an applicant.

e Previous work to assess bias of learned classifier has led to static fairness
metrics, such as demographic parity.

e However, long-term effects of the classifier are important to consider;
rejected applicants may adapt their features in order to get a better
outcome if they reapply (which we call a performative effect)
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e Both classifiers have the same accuracy and achieves static fairness
(demographlc parity), but decision boundary f is harder for group 1 to cross
thanf and group 0 has an easier time than group 1 crossing bothfandf

* Hypothesis: In the performative setting, a learned classifier that uses non-
causal and spurious features for prediction can lead to negative
externalities, such as non-static unfairness.

Setup

* Variable Definition:
e X & R™4: features observed by the decision-maker or classifier
e S,U € {0,1} :unobserved confounding characteristics/variables
e Y & R":true outcome

e (f) f: (classifier’s prediction) outcome function

®  QOur Structural Causal Model (SCM):
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Non-static Fairness Metrics

e Relevant definitions:

§: maximum effort, (R=Y)
u: cost function, (¥ — R29)
(f) f (estimated) probability function of Y = 1,(Z — [0,1])

e Adaptation definition:

AV) = argmax 5% 15, a)s05 — H(A)

A
* Qurlong term fairness metrics:

Improvability: P (f(x +A)>05 | f(x) <05, fx+A) > o.s)

e Qut of those who could improve their real outcome with 6 effort,
what is the probability that they would improve their real outcome
when adapting in response to the classifier?

Gaming: P (f(x +A)>05 | fx) < 0.5, fx+ A) < 0.5)

e QOut of those who could not improve their real outcome with o effort
when adapting in response to the classifier, what is the probability
that they would also improve their real outcome?

Variable m

Causal Feature value (X€)

Our Metrics Visualized

Causal Feature value (X€)
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e For experiments: 6 = 1, and all DGM coefficients have value 1.

e Each point represents a sampled individual, coordinate represents the features

S =0 :Red, § =1 : Blue. Darker colors represent individuals who could have
improved their true label with the limited effort.
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Learned coefficients: w = (w, = 0.6, w. = 1) and b = 0.8

Minority | Majority |
Improvability 0.277 0.031
Gaming 0.503 0.977

 Naively training by maximizing the accuracy:

e The model is motivated to learn a classifier that uses non-causal feature XS,
due to the unobserved confounders in the true data generating process.

e  Gaming is very high for the majority group, and improvement is very low, it
is less extreme for the minority group but still relatively poor metric values.

Ongoing Work

* Post-adaptation data: observations generated after individuals adapt their
features in response to the classifier after one time-step.

X(f) —x+A(f) Y(f) = (X (f))

post post post

* We can train the classifier on post-adaptation data instead:
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e Learned coefficients: w = (w, =0, w.=1) and b = — 0.1

Minority | Majority |
Improvability 0.526 0.723
Gaming 0.0 0.0

* The new classifier uses only the causal feature for prediction, and is more
fair terms of improvability and gaming.

* Furthermore, it is the optimal classifier with respect to our improvability
metric:

Post-adaptation Accuracy Improvement Metric Average
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e Each point of the heat map represents the respective metric for a classifier
with decision boundary: m*X> + X¢ + b =0

e Conclusion: a model trained with ERM on post-adaptation data
finds a causal predictor, which is the optimal classifier with respect
to improbability

Future Directions:

* Propose methods to approximately maximize post-adaptation metrics

* Propose post-adaptation goals (alternative to only accuracy) that bring
more societal benefit or parity fairness

e Consider multiple time-steps



